WCDMA physical layer에서 보면 TFC, TFI, TFCI 등등...뭐가 많이 나온다. 전반적인 설명과 함께 TFC에 대하여 글을 남겨둔다.

WCDMA for UMTS 책에 보면 간략히 TFI, TFCI의 관계에 대해 나와있다.
TFI는 Transport Format Indicator, TFCI는 Transport Format Combination Indicator의 줄임말이다.

Higher layer에서는 모든 블럭이 Transport Block으로 관리된다. (Transport 채널이기도 하고.) 요 TB들은 어떤 특정한 포맷을 가지게 되는데 이를 TF, Transport Format이라고 한다. 이는 상위에서 설정값으로 내려온다. 이게 종류가 여러개란 말이지. 그런데 physical 전송할때마다 일일히 '이 포맷은 몇바이트짜리다.' 라고 쓰면 bit를 많이 쓰게 되니까 그냥 그걸 index식으로 표현하는게 (0은 A비트, 1은 B비트 뭐 이런식) TFI 인것.

TrCH은 (Transport Channel) 동시에 여러개가 열려있을 수 도 있다. 그러면 당연히 TFI도 여러개. 하지만 실질적으로 Physical Layer의 Channel은 DPCCH, DPDCH의 2개. 그러면 여러개의 TrCH을 Multiplexing 해야되는거지. 그래서 어떤 TFI의 데이터들을 MUX했는지 알려주기 위한 것이 TFCI.

예들 들자면, TrCH이 3개가 있었다고 가정하고 각각 TFI가 0,1,0 이었다고 하자. 저런 구성의 TFI 3개를 섞었을때 TFCI가 0이라고 정해놓는거지. TFI가 0,1,1일 경우에 TFCI가 1이라고 정해놓는거고. 그럼 DPCCH에 TFCI값을 보고 '아 이거 어떤녀석들이 섞여 있는거구나. 그거에 따라서 분리(Demultiplexing)해야겠네' 라고 할 수 있는것.

해당되는 TFCI의 의미를 알려면 3GPP 34.108 의 6.10.2 절을 보면 상세히 나와있다. 저 스펙문서에서 TFS에 보면... '숫자'x'숫자' 가 있다. (ex. 0x103, 1x39, etc) 앞의 숫자는 블럭개수를 의미하고, 뒤의 숫자는 비트수를 의미한다. 간혹 보면 0x103 이런녀석들 있는데...사이즈가 있어도 블럭이 없는것이니까 0이라고 생각하면 된다. (그래서 저런 경우 옆에 'alt. 1x0' 라고 명시되어있다. 사이즈 제로란 소리)

The introduction of HSDPA (High Speed Downlink Packet Access) is expected to enable mobile operators to exploit the full potential of 3G technology by offering mobile broadband services at competitive costs. With a maximum theoretical peak throughput of 14.4 Mbps peak per user, HSDPA can significantly shorten the time required to download rich-media files to an HSDPA handset. As an example, downloading one minute of audio from an MP3 music file is calculated to take 132 seconds with GPRS, 22.4 seconds with UMTS and only 4.1 seconds with HSDPA. The result is an 82% savings in air time. That means it is possible to serve more mobile subscribers using the same infrastructure. Such high capacity performance, however, comes at a price: an exponential increase in the bandwidth required to backhaul cellular traffic from Node Bs to the RNC (radio network controller).


“Backhaul” is a broad term for the provision of connectivity in the service provider’s core network. In the mobile space, backhaul is the means for connecting base stations or cellular sites and the operator’s core network over a variety of transport media. Backhaul is one of the major contributors to the high costs of building out and running a mobile network. Industry consensus indicates that transport equipment accounts for 25% of the costs of private cellular backhaul infrastructure. Transport outlays, moreover, vary between 40-60% of the total cost of leased lines, with backhaul contributing 75% of that sum. This reality obliges cellular providers to reconsider cellular backhaul strategy.

Alternatives to E1/T1 Lines

Today the majority of cellular networks rely on SDH/SONET or ATM transmission services with E1/T1 access lines. Although 3G data traffic is still only a relatively small overall portion of mobile transmission, this situation is expected to change quickly as UMTS operators take their HSDPA networks onstream over the next few years. Assuming that additional E1/T1 lines are readily available from the landline operator, the amount of backhaul traffic is predicted to grow faster than the expected average revenue per user (ARPU).


The challenge is that the explosive increase in backhaul waiting on the doorstep must be controlled to ensure mobile service provider revenue. For purposes of comparison, while one or two E1/T1 lines comprising the transport network would be sufficient to handle the average number of links connected to 2G cellular base stations, the impending introduction of HSDPA may require this number to increased to anywhere from eight to sixteen E1/T1s per 3G cellular site. Without mechanisms in place to control operating and capital expenses (Opex and Capex), the costs may not justify the business case.

Supporting Divergent Technological Demands and Applications

Complicating the equation is the need to support simultaneously the divergent technological demands and applications of existing 2G/2.5G networks and emerging 3G operations. The transition from TDM circuit-switched networks to ATM and, eventually, Gigabit Ethernet/IP/MPLS packet switched networks raises new challenges, particularly regarding the cost and suitability of the access platform to handle and manage efficiently increased bandwidth capacity and the complexities of voice and data in a converged network.


Mobile operators are saddled with a bewildering choice of backhaul technologies and network interfaces as they try to anticipate which access infrastructure will best serve their current and future requirements. The easiest decision would be to build out parallel networks. Using a dedicated transport network for each different mobile generation, however, is not as efficient or potentially cost-effective as integrating diverse traffic streams over a single backhaul link.


Given the drawbacks, does a converged backhaul access network solution exist that is technologically feasible, economically sound and readily available?

Aggregation and Statistical Multiplexing

One familiar method for reducing backhaul costs, traditionally implemented in high- density segments of the core network, such as the Base Station Controller (BSC) or the Mobile Switching Center (MSC), is aggregating several E1/T1s together and utilizing statistical multiplexing to transport them over STM-1 lines. Aggregation is an essential part of existing cellular network transport design because it allows for more efficient use of the transport bandwidth and simplifies network management. Statistical multiplexing, moreover, is quite appropriate for the new types of data services that 3G will introduce.


With the introduction of 3G, the mobile world is evolving into a real multimedia environment. Instead of plain voice services, a wider range of services is available to subscribers. This range embraces delay-sensitive and high quality services like video streaming, which require a reserve backhaul bandwidth (constant rate) to best effort-type services like Internet surfing, back office services, mailing, data downloads, etc., which, by nature, are statistical also in terms of the air interface and backhaul bandwidth usage. These diversified services allow the operator to design its transport network so as to maximize efficiency by employing statistical techniques.


This new era of 3G and HSDPA services presents additional challenges to network designers. Aggregation, therefore, which characterizes existing core networks, now has become an essential building block in the radio access and transport networks. In other words, it is now implemented even at cell sites.

Fixed and Mobile Convergence

While all of this presents a significant challenge for mobile system architects, we haven’t yet mentioned the next great challenge looming just above the horizon, which is posed by the convergence of fixed and mobile networks. This trend is now being pioneered by world-class providers such as British Telecom (BT) and France Telecom (FT), which already have announced the convergence of cellular and other services.


21CN, BT’s “21st century programme,” for example, is intended to become “an advanced communications network for the future” in which “end-users will be able to access voice messages, data or video at any time on any device” and “share personal contact directory across their home phone, PC, mobile and PDA.” Meanwhile, across the English Channel, Orange already has become the single brand for France Telecom's Internet, television and mobile offerings, the first step towards fully convergent operations.


The test here for network architects is that to succeed, convergence between fixed line and mobile services will have to provide the same look and feel. For that reason, services will have to be agnostic both to the access method and the devices that are being connected. From the user’s standpoint, that means that e-mail or Internet surfing must be indifferent to whether they’re being provided over a WiFi home connection or a 3G mobile handset. This requires a unified transport network, which, we probably can assume, will be based on IP technology. In fact, the various standards bodies already are defining this unified IP-based transport network. IMS (IP Multimedia Subsystem) is one such technology enabler for this convergence. On the other side of the equation, 3GPP, the 3rd Generation Partnership Project, has defined an “all-IP” approach in all its standards ever since Rev 5.

Packet-Based Backhaul Networks

The task ahead, therefore, will be to provide an effective solution to connect the installed base of mobile infrastructure – which has both GSM TDM-based and UMTS ATM-based network elements – over IP. This requires the use of pseudo-wire technology, which transports TDM/ATM circuits transparently across Ethernet, IP or MPLS packet switched networks (PSNs). Pseudo wire solutions are particularly suited to cellular backhaul because they are transparent to the underlying traffic. Unlike VoIP, which requires translation of signaling, pseudo wires provide a transport tunnel across the statistical packet network without distortion.


As a rule, mobile networks require a high degree of synchronization to maintain a proper service quality because cellular traffic is extremely sensitive to latency and packet loss. This is achieved by distribution of a common clock to serve as a point of reference among the numerous base stations spanning the network. Packet networks, however, are statistical-based by nature and do not provide inherent timing information whatsoever. Matters are made worse in a PSN as a result of Packet Loss (PL), when packets do not arrive at their destination, and Packet Delay Variation (PDV), when packets arrive with random, unpredictable delay. Sophisticated clock recovery mechanisms are required to reconstruct timing and achieve the desired timing accuracy in the presence of packet delay variation and packet loss. This kind of clock recovery mechanism results in a process that negates the effect of the random PDV and captures the average rate of transmission of the original bit stream.

Deploying HSDPA

By applying pseudo wire technologies, mobile operators will be able to speedily deploy high capacity W-CDMA services and keep HSDPA operating costs to a minimum while increasing their revenues and profitability from media-rich 3G content. As an interim solution, those mobile operators may consider a hybrid solution that will run all their existing and delay-sensitive traffic over the deployed TDM links, while only the aggregation HSDPA traffic will be connected employing pseudo-wire technologies and packet transport networks.


Mobile telephony’s backhaul challenge opens a door for new solutions to be incorporated in the transport network, such as packet-based technologies. Pseudo-wire techniques are proven technology enablers for such a migration.

1. WCDMA란?

Analog Cellular 시스템은 흔히 제1세대 시스템이라 합니다.
현재 사용되고 있는 GSM, PDC, cdmaOne(IS-95), US-TDMA(IS-136) 등은 제2세대 시스템입니다. 이 시스템들은 음성통신을 무선환경에서 전달하는 것을 주 목적으로 개발되었고 현 무선통신 시장을 발전시키는데 독보적인 역할을 했습니다.
제3세대 시스템은 멀티미디어 전송을 목적으로 개발되었고, 고화질 화상 서비스, 빠른 데이터 전송율 등 많은 기존 시스템과의 차별성을 가짐으로서 상상할 수도 없는 높은 부가가치를 창출할 것으로 예상되고 있습니다.
WCDMA는 가장 많은 국가들이 채택하고 있는 제3세대 이동통신 시스템입니다. 우리나라, 유럽, 일본, 미국 그리고 중국 등의 많은 기관들이 3GPP(3'rd Generation Project Group)을 구성하여 기술 스팩을 발전시켜 나가고 있습니다.
제3세대 통신시스템을 개발하고자 하는 의지는 ITU(International Telecommunications Union)의 WARC(World Administrative Radio Conference)의 1992년 회의에서 시작되었으며, ITU에서는 이 제3세대 시스템을 IMT-2000(International Mobile Telephony 2000)이라 일컫고 CDMA와 TDMA를 기반으로 하는 몇 가지 무선 접속 규격(air interface)을 정의하고 있습니다. 애초 IMT-2000 시스템의 목적은 세계적으로 단일 무선 접속 규격을 만드는 것이었으나 여러 가지 정책적, 기술적인 문제들로 인해 어려워진 것이 사실입니다. 하지만 W-CDMA는 유럽의 모든 나라와 우리나라, 일본을 포함하는 많은 나라들에서 제3세대 통신을 위한 무선 접속 기술로서 채택되어 있어 부분적으로나마 ITU의 목적에 가장 부합하는 규격이라고 볼 수 있습니다.

사용자 삽입 이미지


2. IMT-2000의 버젼별 발전 현황

사용자 삽입 이미지


3. WCDMA의 개요와 특성

W-CDMA(Wideband CDMA) System은 높은 음성 품질을 가지고 이동성을 보장하며 PCS에 용응될 수 있다. 음성 코딩을 위해서는 32kbps ADPCM(Adaptive Differential Pulse Code Modulation)을 채택하였고 시속 100km 정도의 속도로 움직이더라도 통화가 가능하다.

(1) Configuration of the W-CDMA System

1) Forward Link
송신기는 음성 부호화기, Convolutional 부호화기, Interleaver, Multiplexer, 무선 주파수 변조기로 구성된다. 수신기는 음성 복호화기, Viterbi 복호화기, Deinterleaver, Rake 수신기, 무선 주파수 복조기로 구성된다.
Forward Link에서 기지국은 기지국내의 모든 단말기로 데이타를 전송하며 따라서 동기화가 필요하다. W-CDMA System에서는 Walsh Orthogonal Codes를 사용하여 간섭이 생기지 않으며 PN Code는 신호에 지연이 생기더라도 Correlation을 감소시켜 준다.

2) Reverse Link
송신기는 음성 부호화기, Convolutional 부호화기, Interleaver, Multiplexer, 무선 주파수 변조기로 구성된다. 수신기는 음성 복호화기, Viterbi 복호화기, Deinterleaver, 간섭 해소 시스템(ICS:Interference Canceler System), 무선 주파수 복조기로 구성된다.
W-CDMA 시스템은 많은 가입자를 수용할 수 있으며 Long PN Code를 사용하여 다른 가입자로 부터의 간섭을 억압한다.


(2) Details of the W-CDMA System

대역 확산의 방식은 DS(Direct Sequence) 방식이 사용되는데 주파수 사용 효율이 높고, 간섭에 강하며 Fading에 강하다는 장점이 있다.
그외 W-CDMA System의 특성은 아래와 같은 것이 있다.

- Power Control
- Path Diversity receiving
- Error Control
- Interference Canceler system(ICS)
- Robust Voice Encoding

W-CDMA 시스템이 Fading에 강한 것은 Power Control, Path Diversity, Error Control에 기인한 것이며 ICS로 인하여 큰 용량을 가지게 된다. 또한 뛰어난 음성 코딩 방식으로 유선에 가까운 높은 음성 품질을 얻을 수 있다.

1) Path Diversity
W-CDMA 시스템에는 Rake Receiver가 사용되는데 다음과 같은 세가지 기능을 가지고 있다.

- 대역 확산 신호의 동기화된 샘플링
- 다중 경로 지연에 따른 Correlation Detection
- 채널 반사에 따른 Weighting Diversity

2) Error Control
Fading 채널에서 대부분의 에러는 수신된 신호가 낮을때 발생하며 에러는 Burst의 형태로 나타난다. 이 Burst Error가 Convolutional Code에 유입되면 송신 신호에서 에러가 발생할 확률이 높아지므로 이러한 현상을 방지하기 위해 Error Pattern을 Randomize하는 Interleaver가 사용된다.

3) ICS(Interference Canceler System)
W-CDMA의 Reverse Link에는 ICS가 사용되며 ICS는 기지국에 설치된다. ICS는 무선 채널 Estimator, Pilot 신호 Canceler, Interference Canceler로 구성된다

+ Recent posts